STEADY-STATE ISOTHERMAL FLOW OF A
VISCOPLASTIC DISPERSED SYSTEM IN AN
ELBOW PIPE OF CIRCULAR CROSS SECTION

A, Kh. Kim ' UDC 532.529.5:532.135

The equation of flow of a viscoplastic system in an elbow pipe of noncircular cross section
is presented in natural form. Using the equation so derived, an approximate solution is
obtained for the motion of a viscoplastic system in an elbow pipe of circular cross section.

The Shvedov —Bingham method has been employed for studying the flow of many dispersed systems.
The chief advantage of this method over other methods lies in the simplicity of the equations. Experi-
mental data show that the Shvedov-—-Bingham equation is obeyed quite closely for high rates of deformation
even by non-Newtonian liquids. Calculations indicate that the neglect of nonlinearity in the region of small
deformations (for example, in the paraxial region for motion in a circular cylinder) introduces negligible
errors from the point of view of practical engineering, but greatly simplifies the computing method.

Shul'man [2] showed that the Kesson equation gave a fair description of the flow of a pseudoplastic
liquid, and proposed a more general equation applicable to systems with complex rheological properties.
A number of theoretical problems have now been solved by means of these equations. Nevertheless, the
Shvedov —Bingham model, being the simplest representation and giving a fair description of many real
materials, has never lost its importance.

Let us consider the flow of a highly viscous Shvedov—Bingham liquid in a circular pipe with its axis
bent into the arc of a circle of radius R. End effects on entering and leaving the pipe will be neglected.
This is justifiable for highly viscous liquids in which the initial section in which flow starts developing is
fairly small.

This problem may find practical application in calculating the motion of such viscoplastic materials
as peat, clay, etc. in the profiled parts of machinery.

Let us suppose that r, is the radius of cross section of the pipe and o is the central angle of the arc
AB (Fig. 1).

We consider that in the cylindrical coordinate system r, 6, =
v,=0,=0; vy3=9(, 2).
The current lines will thus be circular arcs lying in planes parallel to the coordinate plane rof, The
centers of these circles lie in the oz axis.
The deformation-velocity tensor components will be
érr = éee = ézz =0,
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We thus obtain the following differential equations for the rheodynamics of the viscoplastic system:
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If we neglect the right-hand side (representing the normal inertial force) in Eq. (1), P may be a func-
tion of  only. However, the deformation-velocity tensor components in Eq. {2) are functions of r and z,
Hence P will be a linear function of 0.

Denoting the pressure at the entrance into the pipe by P; and that at the exit by P,, we obtain
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The stress components

Prr=P96::Pzz“_'__P7

/

k? . T, .
Pre= <ﬂ+-h°-) €rgr Py = (ﬂ+“}:~) €2 Pzr:O'

Denoting

Eq. (2) may be rewritten in stress form
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We now express the velocity vy in the form
vy = rd(r, 2).

Then we obtain the following expression for the intensity of the deformation velocities
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We introduce the new variables

Xx=r—R, z=2, —r, K2, —r,<y <1

Then putting

D(r, 2) =v(x, z),

‘/(avjz <av 2 v
h=r —l+l= =xr—,
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where n is the external normal to the isoline

we obtain

v(x, z)==C.

Let us express the following components in terms of v(x, z;)

(5)
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In the brackets the sign in front of r;, has to be chosen so that it may coincide with the sign of the normal
derivative dv/on.

(6)

Essentially the expression 7, + nr(6v/9n) represents the tangential stress at the slip surface. De-
noting this by r, we differentiate Eqs. (5) and (6) with respect to x and z;, respectively:
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Let us suppose that

is the geometrical locus of the points at which the function v(x, z,) takes the value C. Essentially the curve
(7) should be such that gradf is always directed in the direction of the external normal to this curve. Hence
the sign of the normal derivative dv/8n always coincides with the sign of the derivative dy/8f.

Remembering that 9Prpg/6r = 8Py g/ 0X, we may rewrite Eq. (4) in the following way:
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Let us transform the expression
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The sign in the denominator is chosen so that it may coincide with the sign of the normal derivative 8v/0n.
Thus we have
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Remembering further that
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where p is the radius of curvature of the isoline (7), Eq. (8) may be rewritten

dtZveos(y) L ov T, (9)
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In its structure this equation is analogous to that obtained earlier by the author for the case of axial motion
in a cylinder of noncircular section. By using (9) in an inverse manner we may derive an approximate
solution to the problem of the motion of a viscoplastic system in an elbow pipe of noncircular cross section,

However, when the contour of the pipe cross section is given analytically, it is more convenient to
use the direct method, since in this case the law governing the distribution of the tangential stresses in the
solid wall may usually be completely determined.

Let us use Eq. (8) for solving the problem of motion in an elbow pipe of circular cross section by
the direct method. In the present case all the normal derivatives are derivatives along the direction of the
internal normal to the isoline f(x, z,) = D.

Considering the inner region very close to the solid wall, we express the particular solution of Eq.
(8) in the form

i(RZ—!—Rr——2r2) AT TN
= et b4 + r’—R 2.
! 6r2(R—1r) VA+=R
We express the general solution of Eg. (8) in the form

T="Ty + Ty

where

An

1
Ty = Typ, €XP § [~—+
p

)
0

2cos (nx)] dn:
r ?

Ty is the value of 7, at the solid wall (boundary).

Let us expand the function v(n) in powers of An in the neighborhood of a point lying on the contour of
the pipe cross section.

If we start from the principle that the system is attached to the solid wall, the contour of the pipe
cross section is the zero isoline of the function »(x, z;). At all boundary points of the core of the cross
section this function should have a constant value, and at these points we should also have dv/on = 0.

Using v, to denote the value of the function v(x, z;) at the boundary of the core of the cross section
we obtain

av

- (Y v An?
v (6n)b A“(anz)b C (10)

The tangential stress at the solid wall is

0
Ty =Ty T Ty =T+ (R +rycos9) 1y (l) s
on b

where rj is the radius of the pipe cross section. From this equation we obtain

(_al) _ Ty T b —T (11)
onj)y, MR+ rycosg)

Differentiating the equation

! av
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we obtain
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For points close to the solid wall, and subject to the condition that n is the internal normal to the
isoline v(x, z) = C, we have

o _ [_R_"’_T.QX ANE (12)
on VEZ+(r—RE on on?
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On the other hand, from Eq. (9) we have

T [ —
g% _ H_‘ [i 2’c:os(nx)] ) (13)
Equating the right-hand sides of (12) and (13), at the solid wall we obtain
(22}_) _ oy 4 Tap) R—ry (i + Ty c059) . (14)
on? /y ry(R - rycos @)? 1
If in Eq. (10) we take only the first two terms of the expansion on the right-hand side, we have
v v \2 2y

o GV G 5, -

=
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It follows from the condition that, at any point of the boundary, the tangential stress should equal
the limiting shear stress that
2
(‘Z"_ — (‘l") + (Q_"_) An = 0,
on jo \on/y on /v

In order to satisfy this condition the expression under the root in Eq. (15) must be equated to zero:

ov \2 O
Ad v, (22} =o.
<6n >b + % (0n2 )b

Substituting the values of the derivatives from /(11) and (14) into this we have
ro (W + T+ To + 2%yp Ty — 271y To— 2Ty To) + 2vgN [T R ATy R— 1o (i + 7o 008 p)] =0.
From this equation we find

Typ = To— Ty — Vonf - V2'Vo1] [i -+ 7 (cos @ — B)) + vinp? -

where
B = R/r,.
The tangential stress at the solid wall
Ty =Tp + Tp =Tp— VNP £ V 2ven i + 7 (cos o — P)I + vinB? . (16)

From the physical point of view the tangential stress 1, must have a positive sign; furthermore,
in modulus it should be greater than the limiting shear stress at all points. In order to satisfy this con-
dition we must take the plus sign in front of the root in the last equation.

In Eq. (16) the quantity v4n?s? under the root is very small compared with the other terms and may
be neglected.

From the condition of equilibrium of an elementary volume of dispersed mass in the elbow pipe we

have
25
( 7, (R 1y cos @) dg = inr,.
°

Putting the value of 7}, into this we obtain
(T — Vo) 2R + V 2vgn (I1R + Lyry) == isury, (17

where

2
I, = S' Vi 1, (cos ¢ — P) dyp;

0

2n
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0
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L
Fig. 1 Fig. 2
Fig. 1. Part of the pipe in which the flow occurs.

Fig. 2. Disposition of the core of the flow in the circular
cross section,

In solving Eq. (16) with respect to v; we must take the plus sign in front of the root, since it is clear
from the physical meaning that with increasing i the modulus of v, should increase.

According to (16), for vy =0, 7 = 7). Substituting for 1}, in (17) by inserting the numerical value of
75 we find the minimum value of i required for the onset of viscoplastic flow:

imin = 27,.
Corresponding to this value of iy,;; we have the minimum pressure at the inlet (P; = 0):
Pimin = imin .
Equation (11) takes the following form after substituting the values of 7yp and myp

(Q) :_Vonﬁ—"}/ QVOn[i+T0(COS(P_ﬁE
o ), R -+ rycos ) '

Putting the same values into (14) we obtain

(@2) _ {mo—vonB + v/ 2vgn [ + To(cos @ — B)]} R— 1y (i -+ T4 CO5 @)
an? Jy, N7y (R - rycos @)?

The distance from the solid wall to the boundary of the core of the cross section will be

( v )
on /b
A==y
(Onz)b
or
An — {Vonﬁ — v 2von i + Ty (cos @ ‘ﬁ)” ro(R 4 rycos ) .
{To— B + v 2vn [i + 7, (cos g— PB)I} R — rq (i - 7, cosg)
The core of the cross section derived from this equation takes the form illustrated in Fig. 2.
NOTATION
R is the radius of the axis of the elbow pipe;
T is the radius of the pipe cross section;
P is the hydrostatic pressure;
o is the density;
Vg Vps Vg are the velocity components;
To is the limiting shear stress;
n is the plastic viscosity;
T is the principal tangential stress;
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is the tangential stress at the solid wall;

is the ratio R/ ry;

is the central angle of the arc AB;

is the angle between the normal and the ox axis;

is the distance from the solid wall to the boundary of the core of the cross section.
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